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Nonuniform Layer Model of a
Millimeter-Wave Phase Shifter
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Abstract —The electromagnetic wave propagation of millimeter waves in

dielectric waveguides with thin surface plasma layers is characterized. The

phase and attenuation of a 94-GHz wave are computed for various surface

plasma layer thicknesses as a function of earner density levels. The

electronfiole pairs generated in the vicinity of the dielectric waveguide

surface by photo excitation are assumed to have an exponential profile due

to either carrier diffusion or the exponentfsd absorption of the opticaf field.

Field computations made for a uniform plasma layer are compared with

those of the nonuniform plasma to illustrate the effects of the exponential

tails of the carrier profiles on both the phase and attenuation of the

millimeter wave. The thin plasma layers slightly affect the field profile of

the transverse electric modes (fields polarized paraflel to the plasma layer).

The transverse magnetic fields are hfghfy distorted at plasma densities

greater than 1016 cm- 3.

I. INTRODUCTION

A FUNDAMENTAL PURPOSE of many electronic

devices is to control the amplitude, phase or direction

of propagation of electromagnetic waves. This is usually

accomplished by passing the electromagnetic wave through

a medium whose properties (refractive index and extinction

coefficient, or complex dielectric constant) can be dynami-

cally controlled. A variety of methods exist for dynamically

controlling the dielectric constant of material, including the

application of an electric, magnetic, or acoustic field to the

material. These techniques have been applied with consid-

erable success to devices which operate in the microwave

and in the optical regions of the spectrum. Attempts to

apply these methods to the millimeter-wave spectral region

have not been as successful. Reliable, high-performance

millimeter-wave components such as dynamically con-

trolled phase shifters, limiters, filters, etc., are not yet

available. The development of these components is a neces-

sary step toward fully utilizing the millimeter-wave region

of the spectrum.

A technique for controlling the dielectric constant of

materials which shows particular promise at millimeter-

wave frequencies is the use of free-carrier effects in the

material. The well-known Drude-Lorentz theory expresses

the dependence of the complex dielectric constant on the

density of free carriers [1]. The theory predicts that the

plasma effects on the dielectric constant will be pro-

nounced at the lower frequencies (below optical frequen-

cies). This occurs because at frequencies above the free-car-
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rier collision frequency which characterizes carrier relaxa-

tion in the material, the functional dependence of the real

and imaginary parts of the dielectric constant are related to

the inverse second and third powers of the frequency,

respectively.

One of the more promising applications of the effect is

the creation of millimeter-wave phase shifters. In these

devices, the electromagnetic waves are confined to a dielec-

tric waveguide (usually fabricated of silicon or gallium

arsenide). A plasma region is then created in the wave-

guide, perturbing the propagating mode. The presence of

the plasma region alters the wave velocity relative to that in

the unperturbed waveguide, resulting in a net phase shift at

the output.

The use of this technique for the fabrication of a practi-

cal device requires a method of dynamically creating the

plasma region in the waveguide. Two methods have been

reported in the literature. One method requires injection of

electrons from contacts [2]–[4]. Experimental measure-

ments of the propagation characteristics of the plasma

injection devices show relatively high losses per degree of

phase shift [5], [6], However, this disadvantage has been

minimized by an alternate approach using photo genera-

tion of carriers [7], [8]. An optical field is used to illuminate

specified regions of the waveguide; the photons are ab-

sorbed, creating electron/hole pairs, and thus forming the

plasma region. Because the plasma region is created in a

thin layer near the surface of the waveguide, the losses are

minimized and theory predicts a high phase shift per

decibel of loss.

The theoretical model used to analyze this structure [7],

[8] assumed that the thin plasma region had a uniform

free-carrier density of specified thickness. To estimate the

wave behavior, Maxwell’s equations were solved for the

multilayer dielectric waveguide. The resulting field solu-

tions were a first-order approximation and illustrated the

basic device performance. However, some subtle character-

istics of the plasma/dielectric waveguide cannot be ex-

plained using the simple four-layer dielectric waveguide

model. Consequently, we have modeled the dielectric/

plasma waveguide using a more accurate nonuniform di-

electric profile characterizing the plasma created by an

exponentially absorbed optical beam. We have solved
Maxwell’s equations in the nonuniform layer using the

mr.dtipoint boundary-value routine COLSYS [9], [10]. Both

transverse electric (TE) and transverse magnetic (TM)

waves have been analyzed. The exponential plasma profile
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has been explored in detail because it is the form of the

plasma density resulting from both the absorption of opti-

cal radiation and carrier diffusion.

Some important differences in the results of the two

models are illustrated. One major difference is that the

decrease in attenuation with increasing plasma density

predicted by the uniform density model does not occur in

the nonuniform case. The exponential tail of free carriers

extending into the waveguide continues to give a loss as the

density increases because the fields cannot be completely

extinguished from the highly absorbing plasma region.

(This is in contrast to the uniform density model, where the

fields are pushed from the high-density plasma region.)

Loss is plotted as a function of plasma density for the

device, allowing a comparison with the other millimeter-

wave phase shifters. The fundamental mode in the wave-

guides is also plotted to show the effects of the plasma

layer on the electric field shapes.

Fig 1. Dielectric waveguide with surface plasma layer The waveguide
thickness is 1 mm and the plasma layer thickness is w ,

‘[PLASMA WIDTH W = SO u m

11. UNIFORM-LAYER MODEL

The uniform layer model is useful for estimating the

basic performance of the dielectric waveguide and will be

reviewed for comparison to the nonuniform structure. Fur-

ther, we will illustrate calculations that show the shapes of

the fields in the dielectric waveguide with a thin plasma

region at one surface of the dielectric slab.

In all of our computations, we assume the dielectric

structure as shown in Fig. 1 has infinite extent along the

y-direction. The calculated complex propagation constants

will only be slightly different form those obtained assum-

ing a rectangular waveguide [11]. The plasma region of

width u is assumed to have a uniform density of free

carriers. In the absence of carrier injection, the plasma

layer is the same semiconductor material as the bulk of the

waveguide. Free carriers are injected in tktis region by

photo excitation. The existence of the free carriers, or

plasma, changes the dielectric constant of the semiconduc-

tor according to the Drude–Lorentz formula

where

and

Km

‘c

the subscript i denotes the different kinds of carriers

dielectric constant in the absence of free carriers,
relaxation time of carrier i,

Y,= l/rz,
@,=(~,q2/~,~oKm) 1/2 = plasma frequency,

q electronic charge,

eo perrnitivity of free space,

ml effective mass of carrier i,

N, number density of charge carrier i.

K is related to the optical constants by the equation

K(a) = (bjk)2 (2)

where n is the refractive index and k is the extinction

coefficient. The material parameters for Si and GaAs re-
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Fig. 2. The propagation characteristics for a TM mode in a silicon
waveguide with uniform plasma layers of various thickness, as a func-

tion of carrier density. (a) The phase shift and (b) the attenuation.

quired in (1) can be obtained from the literature. The

dielectric constant of these materials has recently been

measured with high accuracy [12]. Other required material

properties, such as the mobility p, and effective mass m,

are given in several sources (see, for example, [13]). The

bulk relaxation time can be computed using

(3)

Silicon has both longitudinal ml and transverse m, ef-

fective masses for free electrons. The conductivity effective

mass m, is given by [13]

1

-()

121
—. —+— .

7 m, m[
(4)

m=

Silicon also has both light and heavy holes. Each of these

contribute to (1) as a separate charge carrier. The proper-

ties of Si and GaAs required in the Drude–Lorentz equa-

tions are summarized in [8], along with plots of n and k as

functions of free-carrier number density.
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Fig. 3. The propagation characteristics for a TE mode in a silicon
waveguide with uniform plasma layers of various thicknesses, as a

function of carrier density. (a) The phase shift and (b) the attenuation.

When this device is used as a phase shifter, the amount

of phase shift it produces is calculated from the difference

in the propagation constants when the plasma is present

from that obtained in its absence. The real part of the

propagation constant gives the attenuation when the plasma

is present. Plots of the phase shift and attenuation for the

TM mode as a function of plasma density are given in Fig.

2 for Si. These plots are in good agreement with the results

shown in [7] and [8]. Fig. 2 indicates that very high values

of phase shift per unit length can be obtained when the

plasma density is sufficiently high. The figure also indicates

that attenuation can be reduced, even for the thicker

plasma layers, by sufficiently increasing the plasma den-

sity.

The plots in Fig. 2 are for the TM mode, which exhibits

the highest phase shift. The phase shift and attenuation of

the TE mode in Si are shown in Fig. 3. The curves are of

the same general shape as for the TM mode, but the

magnitude of the phase shift is less.

Some insight into the reasons for the device behavior can

be obtained from plots of the field intensity distribution in

the waveguide. The fields are shown in Fig. 4 for the TE

mode and Fig. 5 for the TM mode. The fields have been

plotted for three plasma densities—one just prior to the

“threshold” of the phase shift curves, one in the middle of

that curve, and one at the plasma of high phase shift

attained at the end of the rapid rise. These points are

shown in Figs. 2 and 3. Fig. 4 shows that the fields

gradually “pushed out” of the plasma region as the free-
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Fig. 4. The electric field intensity for the TE mode for various carrrer

densities in the silicon waveguide with a uniform plasma layer of 10-pm

thickness. The plasma layer extends from 490 to 500 Km.
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Fig. 5. The electric field intensity for the TM mode for various carrier

densities in the silicon waveguide with a uniform plasma layer of 10-pm

thickness. The plasma layer extends from 490 to 500 wm.

carrier density is increased. For the TE mode, this results

in a gradual re-distribution of the field intensity, with the

fields remaining continuous. The TM mode, by contrast,

shows a marked redistribution of the fields. when the

plasma has a sufficiently high density of carriers, the fields

have gone from having a maximum in the center to the

waveguide to having a maximum at the surface of the

plasma. This substantial change in the fields is accompa-

nied by a similar change in the propagation constant,

resulting in a large phase shift. This relatively large mode

shape change could possibly result in field reflections in

the waveguide.

III. PLASMA DISTRIBUTIONS

The plasma generation due to an incident photon flux

occurs in a region adjacent to the air\semiconductor inter-

face. For photon energies of approximately Epk = 3.5 eV,

the absorption coefficients of GaAs and Si are about 106

cm – 1. Consequently, the e – 1 absorption depth for the

light is about 0.01 pm. If we consider using an injection

laser source with Eph = 1.55eV, the absorption coefficient

in GaAs is only about 104 cm – 1. This corresponds to

carrier generation occuring in a 1-pm layer near the surface.

In this section, we present a solution of the carrier

diffusion equation in a semiconductor assuming the car-

riers are generated by an exponentially absorbed source.

The carrier diffusion lengths are assumed to be much

smaller than the waveguide width.
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Diffusion

The analysis begins with the solution to the diffusion

equation for excess carriers due to an incident laser beam

of power PO watts/cm2 at the surface x = O. In steady

state, the excess carriers N(x) satisfy

d 2N
Lj ~–N=–d?(x) (5)

where L~ is the carrier diffusion length, ~ is the sponta-

neous carrier lifetime, and R is the pump due to the

incident laser beam. Since the light injected into the semi-

conductor waveguide is attenuated, the position-dependent

pump rate R(x) satisfies

R(x) = ~l’oe-a’x (6)

where q is the internal efficiency, al is the light absorption

coefficient, h v is the photon energy, and PO is the light

power at x = O.

The solution of (5) with appropriate boundary condi-

tions is

rqa,PO
N(x) =

(

a[L~ i- SI-/L~
e–x/LD _ e—cX[X

hv(a:L; –1) 1 + ST/LD )

(7)

where S is the surface recombination velocity. S =105

cm/s for unpassivated Si and GaAs. However, with a

properly prepared Si surface, S can be much smaller. If we

assume a[LD >>1 and a[L~ >> Sr/L~, then (7) can be

approximated as

N(x) = NOe-X/~D (8)

where the carrier density at the surface is

‘rqPo
NO=

hvL~(l + S~/L~) “
(9)

The excess carrier distribution given by (8) is identical to

the one obtained by assuming the carriers are generated in

a surface layer.

On the other hand, if the diffusion length L~ is small

compared to the absorption depth l/a,, then the excess

carrier distribution becomes

N(x) =NOe-”lx (10)
where NO = rqalPO/hv.

In both of the limiting cases discussed above, the carrier

density has an exponential dependence. Therefore, we will

study the effects of these distributions on the modal behav-

ior in the simeconductor waveguides. The dielectric con-~

stant in the waveguide is given by (l). Since the dielectric

constant is proportional to the square of the plasma

frequency, the corresponding dielectric constant will be

proportional to the carrier density.

IV. ELECTROMAGNETIC FIELDS IN NONUNIFORM

GUIDE

when the dielectric constant k nonuniform due to the

induced carrier profiles, it k difficult to find closed-form

solutions to the field equations. However, in the special

case of an exponential dielectric profile inside the semicon-

ductor as obtained from (8), the wave can be solved in

closed form [14]. To determine the eigenmodes, the fields

must be matched at the two semiconductor/air interfaces.

The resulting mode eigenvalues are determined from a

rather complicated secular equation containing Bessel

functions with complex arguments.

A more general approach is one where the complex wave

equation is solved numerically using a multipoint

boundary-value differential equation solver. The formula-

tion of this problem is given in the Appendix. We have

tested our results using various dielectric profiles. One

example of the field solutions obtianed from COLSYS was

for a dielectric slab waveguide with a uniform plasma layer

as discussed earlier. Results were identical to those ob-

tained from closed-form solutions.
The mathematical formulation of this problem is very

different for the TE and TM modes. However, for both

cases, the wave equation was reduced to two second-order

(real and imaginary) differential equations. The COLSYS

code is formulated such that solutions of simultaneous

differential equations of arbitrary order are obtained.

However, the continuity or “smoothness” of the solution is

one degree less than the equation orders. For example, a

differential equation of order n as given by d“f/dxn = g(x)

has solutions in f G Cn– 1 space. Thus, for n = 2, the
solutions have smooth first-order derivatives, but d 2y/dx 2

has discontinuities.

TE Modes

Because the wave equation can be separated into two

second-order differential equations, the problem formula-

tion is straightforward. The complex wave functions ~ are

solutions of (A3) as given in the Appendix. Since the

maximum order of the two simultaneous equations is 2, the

wave functions have continuous first-order derivatives in-

side the semiconductor waveguide. The eigenvalues y defi-

ning the propagation constants were obtained with relative

errors less than 10-5.

The propagation constants ~ and wave attenuation coef-

ficients a obtained from solutions were used to calculate

the relative phase shifts and attenuation of the modes over

a l-cm length of waveguide. The differential values were

calculated from the a, j3 values in the passive waveguides

and those obtained in the active one. In Figs. 6 and 7, we

show the results obtained for Si and GaAs waveguides with

exponential plasma profiles of the form No exp( – x/ W~ )

where NO is the plasma density at the surface. The abcissa

is the value of iVO. The parameter W~ represents the

diffusion length L~ in (8) when a~L~ >>1, whereas Wd

represents l/al in (10) when a[L~ <<1.

The phase shift and attenuation performances are simi-

lar to those obtained using the uniform plasma layer

model. However, we note that although the attenuation

exhibits a resonance-type behavior, it does not go to zero at

high plasma densities. This occurs because of the exponen-

tial tails of the carrier profiles which extend into the

semiconductor material. In slab plasma layers, the fields

are more easily pushed from the slab. In Figs. 8 and 9, the



BUTLER et a[.: MILLIMETER-WAVE PHASE SHIFTER 151

-20 -

E~
w
g-40 -
k EXPONENTIAL DECAY

F FACTOR W$ = 10 pm
or
~- aa -
W
a
x

2 pm

&

-al -

NI

- Im -
1014 1o15 ,.16 1017 ,018

PLASMA OENSITY N lcm-31

(a)

4

[

EXPONENTIAL OECAY

3,5 FACTOR Wd = 10 flm~

5 um. A

F .1 Zurn. l’xr’. .-.~s
m u“1:

\

; ‘\,
s
z 2.5

/ ,$,
# ~\

o l’,
L
<2

; Ii

2
;/’

“,, i,

g 1.5

“/’
‘*; \

1
:i

t, ‘\

05 ~’” /’ ‘.

..” /’

o . . -----
,“14 ,“15 ,nw ,“?7 ,“?8..

PL’&MAOEklTY N(C; -31 “-

(b)
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fields are plotted for W~ = 5 pm and various plasma densi-

ties at the surface. When NO = 1016 cm-3, the mode profiles

are almost symmetrical, while for NO vahtes = 1018, the

fields are being pushed toward the opposite side of the

semiconductor slab.

TM Modes

In contrast to the TE mode, the field interaction of the

TM mode with the plasma layer is pronounced. Relative

phase shifts and attenuations are larger at the high plasma

densities. In addition, the mathematical formulation is

more complicated. In the Appendix, we have reduced the

two second-order differential equations to a series of first-

order ones. This was necessary because of the nature of the

differential equation as given by (AlO). The form of the

equation is such that we must calculate the functional

dependence d~/dx inside the waveguide. Although d~/dx

is a well-behaved function for the exponential profiles, it

has a discontinuity for the uniform plasma slabs. However,

with proper formulation as that given in the Appendix, it is

not necessary to compute the d~/dx functional depen-

dence.

The phase shift and attenuation performance for the TM

modes in Si and GaAs semiconductor waveguides are

shown in Figs. 10 and 11 for the various exponential

profiles. The major contrast between these solutions and

those obtained using the slab plasma model is that attenua-
tion does not significantly decrease for the case of high

surface plasma densities using the nonuniform plasma

model, especially for the thicker plasma regions.

The mode patterns of the TM waves are shown in Figs.

12 and 13. They were obtained for a 5-pm exponential

carrier density with maximum values occuring at the

surfaces. It should be noted that the high NO values
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produce a plasma surface wave since the field energy is

concentrated near the surface.

V. CONCLUSION

An analysis of the millimeter-wave phase shifter has

been presented. The phase shift is obtained by altering the

dielectric constant of a semiconductor waveguide by

photo-excitation of electron/hole pairs. Our analysis treats

a nonuniform carrier distribution in the waveguide, in

contrast to earlier treatments using a uniform layer model.

The nonuniform plasma model has been applied to an

exponentially absorbed optical beam. The model reveals

that wave attenuation does not approach zero as the plasma

density increases, in contrast to the uniform layer model

results. The behavior of the phase shift as a function of
plasma density is similar for both models.

The field distributions in the phase shifter have also

been plotted for both the uniform and nonuniform layer

models. The field distributions show that the high phase

shift of the TM mode is accomplished by a strong distor-

tion of the field from that in the passive dielectric wave-

guide. On the other hand, the fields of the TE mode change

very little from that obtained in the passive waveguide to

those of the active structure.

The model reported here is of a general nature and can

be used to analyze a variety of spatial profiles of the

complex dielectric constant in waveguides. We are pre-
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sently using the model to analyze nonuniform guides at

optical frequencies.

APPENDIX

We have solved Maxwell’s equations by numerical tech-

niques using software developed for multiple-point

boundary-value problems. The dielectric waveguide of Fig.

1 can be approximated using a multiple-layer waveguide

where the dielectric constant is layer dependent. However,

in the case where the electron/hole pairs are generated at

the surface of the dielectric waveguide, the carriers diffuse

to interior points. The resulting pair density will have a

exponential behavior along x so that the complex dielectric

constant ~(x) = KOe–x/xo. Since the dielectric constant

varies continuously along x, we use numerical techniques

to solve the wave equation. We assume the modes propa-

gate along z according to e~@~-~z where y = a + j~ is the

complex propagation constant.

TE Mode
.

In the slab waveguide model, the field components are

independent of y. For the TE wave, we assume the compo-

nent Ey = $(x)e~o~–yz. The remaining fields are

HX = ~Ev (Al)
jap

1 8EY
Hz=–——

jup ax “

The wave function ~ satisfies the wave equation

(A2)

(A3)

where K(x) defines the relative dielectric constant.

Since the wave function ~ = ~, + j~, is complex, the

above equation becomes

d2~,
—-=- [(a2-p2)+k:(n2- k2)]+y
dx 2

+2[a~ – kink] $i (A4a)

d2+,
—=-2[a/3- k;rzk]$, -[(a2-P2)
dx 2

+ k~(~’ – k2)]+i (A4b)

where we have K = (n – jk)2, n is the refractive index and

k is the extinction coefficient.

Since the computational package COLSYS solves a mul-

tipoint boundary problem, we add two extra differential

equations

:=0 (A5a)

d~
–o

z“
(A5b)

which allows for the computation of the complex eigenval-

ues y.

Outside the dielectric waveguide, the field solutions can

be written in terms of waveftmction and eigenvalues at

X = dU, the upper boundary, and x = d,, the lower

boundary. In regions 1 and 3, the air field solutions are

~1 = $(dU)el’t~.-X) (A6a)

*3= ~(dl)el’(-@~) (A6b)

where p2 = – (yz + k;). The total number of boundary

equations (4) at the two interfaces is obtained by matching

the magnetic fields

d~(dU)
dx +py(dU) =0

d~(d,)

‘–py(d{)=o
dx

(A7a)

(A7b)

Since the total order of the system of equations is six, we

arbitrarily set the field at x = O (center point of guide) to

+(O) =1 giving us a total of six boundary equations. This

last boundary condition sets the field magnitude to unity

with a zero phase shift.

TM Mode

The TM modes have the field components EX, Ez, and

H,. Here, we set H,= @(x) eJ*t-yz and the remaining field

components become

EX =
Y

Hy
jtieo~(x)

1 8HY
E==

jtieo~(x) dx “

The wave function + satisfies

(A8)

(A9)

[11 8+
K(X)A ‘—

dX K(X) aX
+ [y2+/%:K(X)]@=o (A1O)

while the eigenvalue satisfies dy/ dx = O.

The solution of (A1O) is more complicated to obtain

from COLSYS than for (A3) because the derivative of the

dielectric constant appears in the differential equation.

Consequently, it is convenient to reduce (A1O) to a series

of first-order equations of the real variables

, @l=a (Alla)

@2=/3 (Allb)

Q3 = +, (Allc)

1

[

d~, d~,

‘4= ~ “z+ ‘ix 1 (And)

@5= +i (Alle)
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The resulting set of differential equations become

do,
—o
dx =

d@,
—=0
dx

d@3

dx
— = Kr@4 — Ki@6

+ (20102+ Ki)(trr@5 – Ki@3)}

d@5
— — Ki@4 + Kr@6

dx –

(A12a)

(A12b)

(A12c)

(A12d)

(A12e)

‘(2@1@2+ Ki)(~r@~+ Ki@~)}. (A12f)

The field solutions outside the semiconductor are

@l=@(dU)e~I+XJ (A13a)

+3 = @(d,) eP(-~/+@ (A13b)

where p 2 = – (yz + k?). In terms of the variables @,, the
eigenvalues y = @l + j@2.

The boundary conditions used in COLSYS are

K,@4(d/)– Kz@6(d1)– [KrPr– KiPi]@3(d~)

+ (Kipr + ~ip,)@5(d1) = O (A14a)

Ki@4(d/)+ K,@G(d/)– [Kip, + Krpi]@3(dl)

K ,@4

Ki@4

‘( KrPr - K,pi)@~(d,) = o (Aldb)

@3(dO)– 1=0 (A14c)

@,(do) =0 (A14d)

du)– Ki@6(du) +( KrPr–~iPi)@3(du)

- (KiPr + KrPi)@5(du) = o (AIQe)

du) + K.@G(da) + (KjPr + K,Pi )@3(dU)

+( K,J)- Kipi)@5(dU) = O. (A14f)

The boundary conditions in (A14a) and (A14b) are

obtained by matching the axial component of the electric

field E= at x = dl. Equations (A14e) and (A14f) are ob-

tained from matching Ez at x = dU. The remaining two

boundary conditions are obtained by arbitrarily setting the

wave function @= 1 at x = do.
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